Answer:
Option B,C
Explanation:
$V=\frac{Kr^{2}}{2}$
$F=-\frac{\text{d}V}{\text{d}r}= -Kr$ [ towars centre]
[ $F=-\frac{\text{d}V}{\text{d}r}$ ]
$kR= \frac{mv^{2}}{R}$ [Centripetal force ]
$v=\sqrt{\frac{kR^{2}}{m}}=\sqrt{\frac{k}{m}}R$
$\Rightarrow$ $L=mvR=\sqrt{\frac{k}{m}}R^{2}$