Answer:
Option B
Explanation:
From $Bqv=\frac{mv^{2}}{r},$ we have
$r=\frac{mv}{Bq}=\frac{\sqrt{2mK}}{Bq}$
where,K is the kinetic energy
As, kinetic energies of particles are same ;
$r\propto \frac{\sqrt{m}}{q}$
= $r_{e}:r_{p}:r_{\alpha}=\frac{\sqrt{m}_{e}}{e}:\frac{\sqrt{m_{p}}}{e}:\frac{\sqrt{4m_{p}}}{2e}$
Clearly, $r_{p}=r_{\alpha} $ and $r_{e}$ , is least [ $\because m _{e}<m_{p}$ ]
So, $r_{p} =r_{\alpha}>r_{e}$