Answer:
Option B
Explanation:
Force = $-\frac{\text{d}U}{\text{d}r}$
$\Rightarrow F=-\frac{\text{d}}{\text{d}r}(\frac{-k}{2r^{2}})=$ $-\frac{k}{r^{3}}$
As particle is on circular path, this force must be centripetal force.
$\Rightarrow \mid F \mid=\frac{mv^{2}}{r}$
So,
$\frac{k}{r^{3}}=\frac{mv^{2}}{r}\Rightarrow\frac{1}{2}mv^{2}=\frac{k}{2r^{2}}$
Total energy of particle = KE +PE
= $\frac{k}{2r^{2}}-\frac{k}{2r^{2}}=0$
Total energy =0