1)

The density of a material in the shape of a cube is determined by measuring three sides of the cube and its mass. If the relative errors in measuring the mass and length are respectively 1.5%  and 1% , the maximum error in determining the density is


A) 3.5%

B) 4.5%

C) 2.5%

D) 6%

Answer:

Option B

Explanation:

 Density, $\rho=\frac{Mass}{Volume}=\frac{M}{L^{3}}$

or,  $\rho=\frac{M}{L^{3}}$

Error in density  $\frac{\triangle\rho}{\rho}=\frac{\triangle M}{M}=\frac{3\triangle L}{L}$

So,maximum % error in measurement of ρ is 

$\frac{\triangle\rho}{\rho}\times100=\frac{\triangle M}{M}\times100=\frac{3\triangle L}{L}\times100$

Or % error in density = $1.5+3\times1$

% error = 4.5%