Answer:
Option B,C
Explanation:
We have,
$f'(x)=e^{(f(x)-g(x))}g'^{(x)} \forall x \in R$
$\Rightarrow$ $f'(x)= \frac{e^{f(x)}}{e^{g(x)}}g'(x)$
$\Rightarrow$ $\frac{f'(x)}{e^{f(x)}}= \frac{g'(x)}{e^{g(x)}}$
$\Rightarrow$ $e^{-f(x)}f'(x)=e^{-g(x) }g'(x)$
On integrating both sides, we get
$e^{-f(x)}=e^{-g(x) }+c$
At x=1,
$e^{-f(1)}=e^{-g(1) }+c$
$e^{-1}=e^{-g(1) }+c$ [ $\because$ f(1)= 1] ......(i)
At x=2,
$e^{-f(2)}=e^{-g(2) }+c$
$\Rightarrow$ $e^{-f(2)}=e^{-1}+C$ [ $\because$ g(2)= 1] ..........(ii)
From Eqs. (i) and (ii)
$e^{-f(2)}=2e^{-1}-e^{-g(1)}$ ............(iii)
$\Rightarrow$ $e^{-f(2)}>2e^{-1}$
We know that , e-x is decreasing
$\because$ $-f(2)<\log_{e}{2}-1$
$f(2)>1-\log_{e}{2}$
$\Rightarrow$ $e^{-g(1)}+e^{-f(2)}=2e^{-1}$ [from Eq,(iii)]
$\Rightarrow$ $e^{-g(1)}<2e^{-1}$
$-g(1)<\log_{e}{2}-1$
$\Rightarrow$ $g(1)>-\log_{e}{2}$