1)

Let P  be a point on the circle S with both coordinates being positive. Let the tangent to S  at P intersect the coordinate  axes at the points  M and N.  Then the mid -point of the line segment MN must lie on the curve


A) (x+y)2=3xy

B) x23+y23=243

C) x2+y2=2xy

D) x2+y2=x2y2

Answer:

Option D

Explanation:

We have, x+ y=4

 Let P(2cosθ,2sinθ)  be a point on a circle.

  Tangent at P is  2cosθx+2sinθy=4

  = xcosθ+ysinθ=2

            692019875_cos.JPG

        The coordinates at  M(2cosθ,0) and N(0,2sinθ)

    Let (h,k) is mid-point of MN

    h=1cosθ   and   k=1sinθ

  cosθ=1h  and         

 sinθ=1k

        cos2θ+sin2θ=1h2+1k2

     1=h2+k2h2.k2

      h2+k2=h2.k2

     Mid-point of MN lie on the curve

  x2+y2=x2y2