Answer:
Option D
Explanation:
We have, x2 + y2 =4
Let $P(2\cos\theta,2\sin\theta)$ be a point on a circle.
Tangent at P is $2\cos\theta x+2\sin\theta y=4$
= $x\cos\theta +y\sin\theta =2$
$\therefore$ The coordinates at $M(\frac{2}{\cos\theta},0)$ and $N(0, \frac{2}{\sin\theta})$
Let (h,k) is mid-point of MN
$\therefore$ $h= \frac{1}{\cos\theta}$ and $k= \frac{1}{\sin\theta}$
$\Rightarrow$ $\cos\theta =\frac{1}{h}$ and
$\sin\theta =\frac{1}{k}$
$\Rightarrow$ $\cos^{2}\theta +\sin^{2}\theta= \frac{1}{h^{2}}+\frac{1}{k^{2}}$
$\Rightarrow$ $1= \frac{h^{2}+k^{2}}{h^{2}.k^{2}}$
$\Rightarrow$ $h^{2}+k^{2}= h^{2}.k^{2}$
$\therefore$ Mid-point of MN lie on the curve
$x^{2}+y^{2}=x^{2}y^{2}$