1)

Let P1: 2x+y-z=3    and P2 : x+2y+z=2 be two planes. Then, which of the following statements (s) is (are) TRUE ?1


A) The line of intersection of $P_{1}$ and $P_{2}$ has direction ratio 1,2,-1

B) The line $\frac{3x-4}{9}=\frac{1-3y}{9}=\frac{z}{3}$ is perpendicular to the line of intersection of $P_{1}$ and $P_{2}$

C) The acute angle between $P_{1}$ and $P_{2}$ is $60^{0}$

D) If $P_{3}$ is the plane passing through the point (4,2,-2) and perpendicular to the line of intersection of $P_{1}$ and $P_{2}$ , then the distance of the point (2,1,1) from the plane $P_{3}$ is $\frac{2}{\sqrt{3}}$

Answer:

Option C,D

Explanation:

We have

    P1: 2x+y-z=3        and

    P2 : x+2y+z=2

  Here,   $\overrightarrow{n_{1}}=\hat{2i}+\hat{j}-\hat{k}$

   and    $\overrightarrow{n_{2}}=\hat{i}+\hat{2j}+\hat{k}$

 (a)  Direction ratio of the line of intersection of P1 and P2  is θ  $\overrightarrow{n_{1}}\times\overrightarrow{n_{2}}$

i.e

         392019653_matr.JPG

   = $(1+2)\hat{i}-(2+1)\hat{j}+(4-1)\hat{k}$

   =  $3(\hat{i}-\hat{j}+\hat{k})$

    Hence, statement a is false

(b) We have

         $\frac{3x-4}{9}=\frac{1-3y}{9}=\frac{z}{3}$

$\Rightarrow$   $\frac{x-\frac{4}{3}}{3}=\frac{(y-\frac{1}{3})}{-3}=\frac{z}{3}$

   This line is parallel to the line of intersection of P1 and P2 .

Hence statement (b) is false.

(c)  Let acute angle between P1 and P2 be θ

      We know that ,

         $\cos\theta = \frac{\overrightarrow{n_{1} }\overrightarrow{n_{2}}}{\mid\overrightarrow{n_{1}}\mid \mid\overrightarrow{n_{2}}\mid }$

  = $\frac{(2\hat{i}+\hat{j}-\hat{k}).(\hat{i}+2\hat{j}+\hat{k})}{\mid 2\hat{i}+\hat{j}-\hat{k}\mid \mid\hat{i}+2\hat{j}+\hat{k}\mid}$

  =  $\frac{2+2-1}{\sqrt{6}\times\sqrt{6}}= \frac{1}{2}$

    θ =60°

Hence the statement (c) is true

   (d) Equation of plane passing through the point (4,2,-2) and perpendicular to the line of intersection of P1 and P2 

                   3(x-4)-3(y-2) +3(z+2)=0

 $\Rightarrow$    3x-3y+3z-12+6+6=0

   $\Rightarrow$    x-y+z=0

   Now distance of the point (2,1,1)

   the plane x-y+z=0 is

 $D =\mid\frac{2-1+1}{\sqrt{1+1+1}}\mid =\frac{2}{\sqrt{3}}$

   Hence statement (d) is true