Answer:
Option B,C,D
Explanation:
In Δ PQR
$\angle PQR=30^{0}$
PQ = $10\sqrt{3}$ , QR=10
By cosine rule
$\cos 30^{0}=\frac{PQ^{2}+QR^{2}-PR^{2}}{2PQ.QR}$
$\Rightarrow\frac{\sqrt{3}}{2}=\frac{300^{}+100^{}-PR^{2}}{200\sqrt{3}}$
$\Rightarrow$ 300=300+100-PR2
$\Rightarrow$ PR=10
Since , PR=QR= 10
$\therefore$ $\angle QPR=30^{0}$ and $\angle QRP=120^{0}$
Area of ΔPQR = $\frac{1}{2}$ PQ.QR $\sin 30^{0}$
= $\frac{1}{2}\times10\sqrt{3}\times 10\times\frac{1}{2}=25\sqrt{3}$
Radius of incircle of
Δ PQR= $\frac{Area of \triangle PQR }{Semi-perimetre of \triangle PQR}$
i.e $r=\frac{\triangle }{s}= \frac{25\sqrt{3}}{\frac{10\sqrt{3}+10+10}{2}}=\frac{25\sqrt{3}}{5(\sqrt{3}+2)}$
$\Rightarrow$ r= $5\sqrt{3}(2-\sqrt{3})=10\sqrt{3}-15$
and radius of the circumcircle
$(R)=\frac{abc}{4\triangle}= \frac{10\sqrt{3}\times10\times10}{4\times25\sqrt{3}}=10$
$\therefore$ Area of circumcircle of Δ PQR= $\pi R^{2}=100\pi$
Hence, option (b), (c) and (d) are correct answer.