Answer:
Option C
Explanation:
key idea Standard deviation is remain unchanged, if observations are added or substracted by a fixed number.
We have,
$\sum_\left(i=1\right)^9\left(x_{i}-5\right)=9$ and $\sum_\left(i=1\right)^9\left(x_{i}-5\right)^{2}=45$
$SD=\sqrt{\frac{\sum_\left(i=1\right)^9\left(x_{1}-5\right)^{2}}{9}-\left(\frac{\sum_\left(i=1\right)^9\left(x_{1}-5\right)}{9}\right)^{2}}$
$\Rightarrow$ SD= $\sqrt{\frac{45}{9}-( \frac{9}{9})^{2}}$
$\Rightarrow$ SD= $\sqrt{5-1}=\sqrt{4}=2$