Answer:
Option C
Explanation:
Given
[x−42x2x2xx−42x2x2xx−4]=(A+Bx)(x−A)2
⇒ Apply C1→ C1+ C2+C3
[5x−42x2x5x−4x−42x5x−42xx−4]=(A+Bx)(x−A)2
Taking common (5x-4) from C1 ,we get
(5x−4)[12x2x1x−42x12xx−4]=(A+Bx)(x−A)2
Apply R2 → R2 - R1 and R3 → R3 - R1
(5x−4)[12x00−x−4000−x−4]=(A+Bx)(x−A)2
Expanding Along C1 , we get
( 5x-4) ( x+4)2 = ( A+Bx) ( x -A)2
Equaring We get,
A= -4, B=5