Answer:
Option C
Explanation:
Given
$\begin{bmatrix}x-4 & 2x & 2x\\2x & x-4 & 2x\\ 2x & 2x &x-4 \end{bmatrix}=\left(A+Bx\right)\left(x-A\right)^{2}$
$\Rightarrow$ Apply C1$\rightarrow$ C1+ C2+C3
$\begin{bmatrix}5x-4 & 2x & 2x\\5x-4 & x-4 & 2x\\ 5x-4 & 2x &x-4 \end{bmatrix}=\left(A+Bx\right)\left(x-A\right)^{2}$
Taking common (5x-4) from C1 ,we get
$\left(5x-4\right)\begin{bmatrix}1 & 2x & 2x\\1 & x-4 & 2x\\ 1 & 2x &x-4 \end{bmatrix}=\left(A+Bx\right)\left(x-A\right)^{2}$
Apply R2 $\rightarrow$ R2 - R1 and R3 $\rightarrow$ R3 - R1
$\left(5x-4\right)\begin{bmatrix}1 & 2x & 0\\0 & -x-4 & 0\\ 0 & 0 & -x-4 \end{bmatrix}=\left(A+Bx\right)\left(x-A\right)^{2}$
Expanding Along C1 , we get
( 5x-4) ( x+4)2 = ( A+Bx) ( x -A)2
Equaring We get,
A= -4, B=5