1)

Let A be the sum of the first 20 terms and B be the sum of first 40 terms of the series

12+2.22+32+2.42+52+2.62+........  If B-2A=100λ  then λ is equal to


A) 232

B) 248

C) 464

D) 496

Answer:

Option B

Explanation:

We have

   12+2.22+32+2.42+52+2.62+  .......

A= Sum of first 20 terms

B= Sum of first 40terms

$\therefore$   A= 12+2.22+32+2.42+52+2.62+........+2.202

A= (12+22+32+.........+202) + (22+42+62+........+202)

A= (12+22+32+.......+202)+4(12+22+32+........+102)

$A= \frac{20\times 21\times 41}{6}+\frac{4\times10 \times 11\times21}{6}$

$A= \frac{20\times 21}{6}(41+22)=\frac{20\times 41\times63}{6}$

Similarly , B= (12+22+32+........+402)+ 4 ( 12+22+32+.......+202)

      $B= \frac{40\times41\times81}{6}+\frac{4\times20\times21\times41}{6}$

     $B= \frac{40\times41}{6}(81+42)=\frac{40\times41\times123}{6}$

Now, B-2A=100λ

$\therefore$    $\frac{40\times41\times123}{6}-\frac{2\times20\times21\times63}{6}=100\lambda$

$\Rightarrow$        $\frac{40}{6}(5043-1323)=100\lambda$

$\Rightarrow$        $\frac{40}{6}\times 3720=100\lambda$

$\Rightarrow$        $40\times620=100\lambda$

$\Rightarrow$     $\lambda =\frac{40\times620}{100}=248$