Answer:
Option A
Explanation:
Let height of tower TM be h
In $\triangle PMT.\tan45^{o}=\frac{TM}{PM}$
$\Rightarrow$ $1=\frac{h}{PM}$
$\Rightarrow$ PM=h
In $\triangle TQM, \tan30^{o}=\frac{h}{QM^{2}}$
$QM=\sqrt{3}h$
In $\triangle PMQ $ $PM^{2}+QM^{2} =PQ^{2}$
$h^{2}+(\sqrt{3h})^{2} =200^{2}$
$\Rightarrow$ $4h^{2}=(200)^{2}$
$\Rightarrow$ h=100 m