Answer:
Option B
Explanation:
Equation of tangent and normal to the curve y2=16x at ( 16,-16) is x-2y+16= 0 and 2x+y-48=0 respectively,
C is the centre of circle passing through PAB
i.e. C= ( 4,0)
Slope of $PC= \frac{16-0}{16-4}=\frac{16}{12}=\frac{4}{3}=m_{1}$
Slope of $PB= \frac{16-0}{16-24}=\frac{16}{-8}=-2=m_{2}$
$\tan\theta=\mid \frac{m_{1}-m_{2}}{1+m_{1}m_{2}}\mid$
$\Rightarrow$ $\tan\theta=\mid \frac{\frac{4}{3}+2}{1-( \frac{4}{3})( 2)}\mid$
$\Rightarrow$ $\tan\theta=2$