1)

Tangent and normal are drawn at P ( 16,16) on the parabola y2=16x, which intersect the axis  of the parabola at A and B , respectively . If C is centre of the circle through the points P,A and B and CPB= θ, then the value of tanθ is


A) 12

B) 2

C) 3

D) 13

Answer:

Option B

Explanation:

Equation of tangent and normal to the curve y2=16x at ( 16,-16) is x-2y+16= 0 and 2x+y-48=0 respectively,

982019539_tangent.JPG

C is the centre of circle passing through PAB

i.e.                C= ( 4,0)

Slope of  PC=160164=1612=43=m1

Slope of  PB=1601624=168=2=m2

                               tanθ=∣m1m21+m1m2

                tanθ=∣43+21(43)(2)

      tanθ=2