Answer:
Option D
Explanation:
We have
$f( x)=x^{2}+\frac{1}{x^{2}}$ and $g( x)=x^{}-\frac{1}{x}$
$\Rightarrow$ $h( x)=\frac{g( x)}{h( x)}$
$\therefore$ $h( x)=\frac{x^{2}+\frac{1}{x^{2}}}{x-\frac{1}{x}}=\frac{( x-\frac{1}{x})^{2}+2}{x-\frac{1}{x}}$
$\therefore$ $h( x)=( x-\frac{1}{x})+\frac{2}{x-\frac{1}{x}}$
$x-\frac{1}{x}>0,$
$( x-\frac{1}{x})+\frac{2}{x-\frac{1}{x}}\in [2\sqrt{2},\infty]$
$x-\frac{1}{x}<0$
$( x-\frac{1}{x})+\frac{2}{x-\frac{1}{x}}\in ( -\infty,2\sqrt{2})$
$\therefore$ Local minimum value is $2\sqrt{2}$