1)

If the curves $y^{2}=6x,9x^{2}+by^{2}=16$  intersect each other at right angles, then the value of b is


A) 6

B) $\frac{7}{2}$

C) 4

D) $\frac{9}{2}$

Answer:

Option D

Explanation:

 We have  y2=6x

$\Rightarrow$      $2y\frac{\text{d}y}{\text{d}x}=6\Rightarrow \frac{\text{d}y}{\text{d}x}=\frac{3}{y}$

       Slope of tangent at ( x1,y1) is m1  = $m_{1}=\frac{3}{y_{1}}$

      Also   ,  $9x^{2}+by^{2}=16$

$\Rightarrow$    $18x+2by\frac{\text{d}y}{\text{d}x}=0  \Rightarrow \frac{\text{d}y}{\text{d}x}=\frac{-9x}{by}$

      Slope of tangent at ( x1,y1) is $m_{2}=\frac{-9x_{1}}{by_{1}}$

Since these are intersection at right angle

$\therefore$                 $m_{1}m_{2}=-1\Rightarrow\frac{27x_{1}}{by^{2}_{1}}=1$

$\Rightarrow$               $\frac{27x_{1}}{6bx^{}_{1}}=1$     [$\because$   $y_{1}^{2}=6x_{1}$]

$\Rightarrow$              $b=\frac{9}{2}$