1)

The sum of the coefficients of all odd degree terms in the expansion is

(x+x31)5+(xx31)5,(x>1)is


A) -1

B) 0

C) 1

D) 2

Answer:

Option D

Explanation:

Key Idea =  (a+b)n+(ab)n

    = 2(nC0an+nC2an2b2+nC4an4b4.....)

We have,

           (x+x31)5+(xx31)5,x>1

           = 2(5C0x5+5C2x3(x31)2+5C4x(x31)4)

           = 2(x5+10x3(x31)+5x(x31)2)

           = 2(x5+10x610x3+5x710x4+5x)

  Sum of coefficients of all odd degree terms is 2 (1-10+5+5)=2