Answer:
Option C
Explanation:
We have,
α,β are the roots of the x2-x+1=0,
$\therefore$ Roots of $x^{2}-x+1=0$ and $-\omega,-\omega^{2}$
$\therefore$ Let $\alpha =-\omega $ and $\beta =-\omega^{2} $
$\Rightarrow$ $\alpha^{101}+\beta^{107}=(-\omega)^{101}+(-\omega^{2})^{107}$
= $-(\omega^{101}+\omega^{214})$
= $-(\omega^{2}+\omega^{}) $ ( $\because$ $\omega^{3}=1$)
= - ( -1) [ $\because$ $1+\omega+\omega^{2}=0$ ]
= 1