1)

Let S= {$x\in R:x\geq0$ and $2\mid \sqrt{x}-3\mid +\sqrt{x}(\sqrt{x}-6)+6=0$. Then , S


A) is an empty set

B) contains exactly one element

C) contains exactly two element

D) contains exactly four element

Answer:

Option C

Explanation:

$2\mid \sqrt{x}-3\mid +\sqrt{x}(\sqrt{x}-6)+6=0$

Let    $\sqrt{x}-3=y$

$\Rightarrow$        $\sqrt{x}=y+3$

                        $2\mid y\mid+(y+3)(y-3)+6=0$

$\Rightarrow$       $2\mid y\mid+y^{2}-3=0$

$\Rightarrow$      $\mid y \mid^{2} +2\mid y\mid-3=0$

$\Rightarrow$     $( \mid y\mid +3)( \mid y\mid-1)=0$

$\Rightarrow$     $ \mid y\mid \neq-3 \Rightarrow \mid y\mid=1$

$\Rightarrow$     $y=\pm 1\Rightarrow\sqrt{x}-3=\pm 1$

$\Rightarrow$     $\sqrt{x}=4,2   \Rightarrow x=16,4$