Answer:
Option B
Explanation:
For the reaction,
$ A(g)+B(g)\rightleftharpoons AB (g)$
Given $E_{a_{b}}=E_{a_{f}}+2RT$
$E_{a_{b}}-E_{a_{f}}=2RT$
Further, $A_{f}=4A_{b}$ or $\frac{A_{f}}{A_{b}}=4$
Now, rate constant for forward reaction,
$k_{f}=A_{f}e^{\frac{-E_{af}}{RT}}$
Like wise, rate constant for backward reaction
$k_{b}=A_{b}e^{\frac{-E_{ab}}{RT}}$
At equillibrium, Rate of forward reaction = Rate of backward reaction
ie., $k_{f}=k_{b}$
or $\frac{k_{f}}{k_{b}}= k_{eq}$
So, $ k_{eq}= \frac{A_{f}e^{-E_{\frac{a_{f}}{RT}}}}{A_{b}e^{-E_{\frac{a_{b}}{RT}}}}$
= $\frac{A_{f}}{A_{b}}e^{\frac{-(E_{a_{f}}-E_{a_{b})}}{RT}}$
After putting the given values, $k_{eq_{}}=4e^{2}$
(as $E_{a_{b}}-E_{a_{f}}=2RT$ and $\frac{A_{f}}{A_{b}}=4$ )
Now,
Δ G0 = -RT ln Keq
= -2500 ln(4 e2)
= -2500 (ln 4 +ln e2 )
= -2500 (1.4 +2)
= -2500 × 3.4
= -8500 J/mol
Absolute value = 8500 J/mol