Answer:
Option D
Explanation:
Given
(i) $2 Cu (s)+\frac{1}{2}O_{2}(g)\rightarrow Cu_{2}O (s);$
Δ G0 =-78,000 J mol-1
= -78 kJ mol-1
(ii)$H_{2}(g)+\frac{1}{2}O_{2}\rightarrow H_{2}O (g);$
Δ G0 =-178,000 J mol-1
= -178 kJ mol-1
So, net reaction is (By (i) - (ii))
$2Cu (g) + H_{2}O (g) \rightarrow Cu_{2}O (s)+H_{2}(g)$
Δ G = 100000 J /mol or 105 J/mol=100 kJ mol-1
Now, for the above reaction
$\triangle G = \triangle G^{0}+RT ln[\frac{p_{H_{}}}{p_{H_{2}O}}]$ and to prevent above the reaction.
Δ G≥ 0
So, $\triangle G^{0}+RT ln[\frac{p_{H_{}}}{p_{H_{2}O}}] \geq 0$
After putting the values,
$10^{5}+8\times1250 ln[\frac{p_{H_{}}}{p_{H_{2}O}}] \geq 0$
or $10^{5}+10^{4} ln[\frac{p_{H_{}}}{p_{H_{2}O}}] \geq 0$
or $10^{4} (lnp _{H_{2}}-ln p_{H_{2}O})\geq -10^{5}$
or $lnp _{H_{2}} \geq -10 +ln p_{H_{2}O}$
or $lnp _{H_{2}} \geq -10 +2.3log(0.01) as ( $ p _{H_{2}O}=1$ %) ≥ -10-4.6
So, $ lnp _{H_{2}}\geq-14.6$