Answer:
Option A
Explanation:
From the graph we can note $\triangle T_{b}$ for solution X i.e.,
$\triangle T_{b(X)}=362-360=2$
Like wiise, $\triangle T_{b}$ for solution Y i.e.,
$\triangle T_{b(Y)}=368-367=1$
Now by using the formula
$\triangle T_{b}$ =i × molality of solution × Kb
For solution X
2= i × mNaCl × Kb(X) ...............(i)
Similarly for solution Y
1= i × mNacl × Kb(Y) ..................(ii)
from Eq .(i) and (ii) above
$\frac{K_{b(X)}}{K_{b(Y)}}=\frac{2}{1}=2$
or Kb(X) = Kb(Y)
For solute S
$2S\rightarrow S_{2}$ (Given due to dimerisation)
initial α 0
final (i - α ) α/2
So, here $i=[1-\frac{\alpha}{2}]$
$\triangle T_{b[X](s)}= (1-\frac{\alpha_{1}}{2})K_{b(X)}$
$\triangle T_{b[Y](s)}= (1-\frac{\alpha_{2}}{2})K_{b(Y)}$
Given $\triangle T_{b(X)(s)}=3\triangle T_{b(Y)(s)}$
$(1-\frac{\alpha_{1}}{2})K_{b(X)}= 3 \times (1-\frac{\alpha_{2}}{2}) \times K_{b(Y)}$
or $2(1-\frac{\alpha_{1}}{2})= 3 (1-\frac{\alpha_{2}}{2})$ [ $\because K_{b(X)}=2K_{b(Y)}$ ]
or $2(1-\frac{\alpha_{1}}{2})= 3 (1-\frac{0.7_{}}{2})$ [ as given,α2 =0.7 ]
or 4- α1 =6 -2.1 or 2 α1 =0.1
so, α =0.05