Answer:
Option A
Explanation:
From the graph we can note △Tb for solution X i.e.,
△Tb(X)=362−360=2
Like wiise, △Tb for solution Y i.e.,
△Tb(Y)=368−367=1
Now by using the formula
△Tb =i × molality of solution × Kb
For solution X
2= i × mNaCl × Kb(X) ...............(i)
Similarly for solution Y
1= i × mNacl × Kb(Y) ..................(ii)
from Eq .(i) and (ii) above
Kb(X)Kb(Y)=21=2
or Kb(X) = Kb(Y)
For solute S
2S→S2 (Given due to dimerisation)
initial α 0
final (i - α ) α/2
So, here i=[1−α2]
△Tb[X](s)=(1−α12)Kb(X)
△Tb[Y](s)=(1−α22)Kb(Y)
Given △Tb(X)(s)=3△Tb(Y)(s)
(1−α12)Kb(X)=3×(1−α22)×Kb(Y)
or 2(1−α12)=3(1−α22) [ ∵Kb(X)=2Kb(Y) ]
or 2(1−α12)=3(1−0.72) [ as given,α2 =0.7 ]
or 4- α1 =6 -2.1 or 2 α1 =0.1
so, α =0.05