Answer:
Option C
Explanation:
Use the formula
$p_{total}= p_A^0\times X_A +P_B^0\times X_{B}$
and for equimolar solutions $X_{A}=X_{B}=\frac{1}{2}$
Given , ptotal =45 torr for equimolar solution
$p_A^0=20torr$
So, $45= p_A^0\times \frac{1}{2}+p_B^0\times\frac{1}{2}=\frac{1}{2}(p_A^0+p_B^0)$
or $ p_A^0+p_B^0=90torr$ .............(i)
But we know $ p_A^0=20torr$
So $ p_B^0$= 90-20=70 torr (From Eq. (i))
Now , for the new solution from the same formula
ptotal = 22.5 torr
22.5 = 20 XA+70 (1-XA) [XA + XB=1]
Or, 22.5 =70-50 XA
So,$X_{A}=\frac{70-22.5}{50}=0.95$
Thus, XB =1-0.95 =0.05 (as XA+ XB =1)
Hence, the ratio
$\frac{X_{A}}{X_{B}}=\frac{0.95}{0.05}=19$