1)

An aqueous solution contain unkonwn concentration of Ba2+. When 50 mL of a 1M solution of Na2SO4 is added , BaSO4 just begins to precipitate. The final volume is 500 mL. The solubility product of BaSO4 is 1×10-10. What is the original concentration of Ba2+?


A) $5\times 10^{-9}M$

B) $2\times 10^{-9}M$

C) $1.1\times 10^{-9}M$

D) $1.0\times 10^{-10}M$

Answer:

Option C

Explanation:

It is given that the final volume is 500 mL and this final volume has arrived when 50 mL of 1M Na2SO4 was added to unknown Ba2+solution. 

So, we can interpret the volume of unknown Ba2+ solution as 450 mL i.e.

 

450 mL Ba2+  Solution   +     50mL  Na2SO Solution →   500mL BaSOSolution

From this, we can calculate the

the concentration of SO42- ion in the solution

via

 M1V1=M2V2

1×50 =M2 × 500     (as 1 M Na2SO4 is taken into consideration)

M2= $\frac{1}{10}=0.1 M$

Now for just precipitation,

 Ionic product= Solubility product  ( KSP)

i.e.

     $[Ba^{2+}][SO_{4}^{2-}]=K_{sp}  $ of BaSO4

  Given Ksp of BaSO - 1× 10-10

So,    [Ba2+] [01]= 1 × 10-10

      [Ba2+] =1 × 10-9 M

Reminder  This is the concentration of  Ba2+ ions in the final solution. Hence, for calculating  the [Ba2+] in the original solution

we have to use

M1V1=M2V2

as M1× 450 = 10-9 × 500

So,

          M1=1.1 × 10-9 M