Answer:
Option C
Explanation:
Let the radius circle with least area be r
Then, then coordinates of centre= (0,4,-r)
Since, circle touches the line y=x in first quadrant
$\therefore$
$\mid\frac{0-(4-r)}{\sqrt{2}}\mid=r$
$\Rightarrow$ $r-4=\pm r\sqrt{2}$
$\Rightarrow$ $r=\frac{4}{\sqrt{2}+1}$ or $\frac{4}{1-\sqrt{2}}$
But $r\neq\frac{4}{1-\sqrt{2}}$ $[\because\frac{4}{1-\sqrt{2}}<0]$
$\therefore$ $r=\frac{4}{\sqrt{2}+1}=4(\sqrt{2}-1)$