Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

The normal to the curve y(x-2) (x-3)=x+6  at the point, where the curve intersects the Y-axis passes through the point


A) (12,12)

B) (12,12)

C) (12,13)

D) (12,13)

Answer:

Option B

Explanation:

Given curve is

    y(x-2)(x-3)=x+6   .........(i)

put x=0 in Eq.(i) , we get

y(2)(3)=6y=1

   So, point of intersection is (0,1)

  Now,   y=x+6(x2)(x3)

 dydx=  1(x2)(x3)(x+6)(x3+x2)(x2)2(x3)2

=(dydx)(0,1)=6+304×9=3636=1

       Equation of normal at (0,1) is given by

                             y1=11(x0)

       x+y-1=0

which passes through the point (12,12)