Answer:
Option B
Explanation:
Given curve is
y(x-2)(x-3)=x+6 .........(i)
put x=0 in Eq.(i) , we get
$y(-2)(-3)=6\Rightarrow y=1$
So, point of intersection is (0,1)
Now, $y= \frac{x+6}{(x-2)(x-3)}$
$\Rightarrow$ $\frac{\text{d}y}{\text{d}x}$= $\frac{1(x-2)(x-3)-(x+6)(x-3+x-2)}{(x-2)^{2}(x-3)^{2}}$
$=(\frac{\text{d}y}{\text{d}x})_{(0,1)}=\frac{6+30}{4\times9}=\frac{36}{36}=1$
$\therefore$ Equation of normal at (0,1) is given by
$y-1 =\frac{-1}{1}(x-0)$
$\Rightarrow$ x+y-1=0
which passes through the point $(\frac{1}{2},\frac{1}{2})$