Processing math: 0%


1)

lim equals


A) \frac{1}{24}

B) \frac{1}{16}

C) \frac{1}{8}

D) \frac{1}{4}

Answer:

Option B

Explanation:

\lim_{x \rightarrow \frac{\pi}{2}} \frac{\cot x-\cos x}{(\pi-2x)^{3}}

      =  \lim_{x \rightarrow \frac{\pi}{2}}\frac{1}{8} \frac{\cos x(1-\sin x)}{\sin x(\frac{\pi}{2}-x)^{3}}

  = \lim_{h \rightarrow 0}\frac{1}{8} \frac{\cos (\frac{\pi}{2}-h)(1-\sin (\frac{\pi}{2}-h))}{\sin(\frac{\pi}{2}-h) (\frac{\pi}{2}-\frac{\pi}{2}+h)^{3}}

    =  \frac{1}{8}\lim_{h \rightarrow 0}\frac{\sin h(1-\cosh)}{\cosh.h^{3}}

 = \frac{1}{8}\lim_{h \rightarrow 0}\frac{\sin h(2\sin^{2}\frac{h}{2})}{\cosh.h^{3}}

  = \frac{1}{4}\lim_{h \rightarrow 0}\frac{\sin h.\sin^{2}(\frac{h}{2})}{\cosh.h^{3}}

=    \frac{1}{4}\lim_{h \rightarrow 0}(\frac{\sinh}{h})(\frac{\sin\frac{h}{2}}{\frac{h}{2}})^{2}.\frac{1}{\cosh}.\frac{1}{4}

=   \frac{1}{4}\times\frac{1}{4}=\frac{1}{16}