Answer:
Option B
Explanation:
We have P (exactly one of A or B occurs)
=P(A∪B)−P(A∩B)
==P(A)+P(B)−2P(A∩B)
According to the question,
P(A)+P(B)−2P(A∩B)=14 .........(i)
P(B)+P(C)−2P(B∩C)=14 .........(ii)
and P(C)+P(A)−2P(C∩A)=14 ........(iii)
On adding Eqs(i),(ii) and (iii) , we get
2[P(A)+P(B)+P(C)−P(A∩B)−P(B∩C)−P(C∩A)]=34
⇒P(A)+P(B)+P(C)−P(A∩B)−P(B∩C)−P(C∩A)=38
P (atleast one event occurs)
P(A∪B∪C) = ⇒P(A)+P(B)+P(C)−P(A∩B)−P(B∩C)−P(C∩A)
+P(A∩B∩C)=38+116=716
[∵P(A∩B∩C=116)]