Answer:
Option B
Explanation:
We have P (exactly one of A or B occurs)
$=P(A\cup B)-P(A \cap B)$
=$=P(A)+P(B)-2P(A\cap B)$
According to the question,
$P(A)+P(B)-2P(A\cap B)=\frac{1}{4}$ .........(i)
$P(B)+P(C)-2P(B\cap C)=\frac{1}{4}$ .........(ii)
and $P(C)+P(A)-2P(C\cap A)=\frac{1}{4}$ ........(iii)
On adding Eqs(i),(ii) and (iii) , we get
$2[P(A)+P(B)+P(C)-P(A\cap B)-P (B\cap C)-P(C\cap A)]=\frac{3}{4}$
$\Rightarrow P(A)+P(B)+P(C)-P(A\cap B)-P (B\cap C)-P(C\cap A)=\frac{3}{8}$
P (atleast one event occurs)
$P(A\cup B\cup C)$ = $\Rightarrow P(A)+P(B)+P(C)-P(A\cap B)-P (B\cap C)-P(C\cap A)$
$+P(A\cap B\cap C)=\frac{3}{8}+\frac{1}{16}=\frac{7}{16}$
$[ \because P(A\cap B\cap C=\frac{1}{16})]$