1)

For three events  A. B and C. If P ( exactly one of A or B occurs)= P (exactly one of B or C occurs)= 14  and P (all the three events occurs simultaneously )= 116 , then the probability that atleast one of the events occurs, is


A) 732

B) 716

C) 764

D) 316

Answer:

Option B

Explanation:

We have P (exactly one of A or B occurs)

=P(AB)P(AB)

==P(A)+P(B)2P(AB)

   According to the question,

     P(A)+P(B)2P(AB)=14   .........(i)

     P(B)+P(C)2P(BC)=14   .........(ii)

and     P(C)+P(A)2P(CA)=14     ........(iii)

 On adding Eqs(i),(ii) and (iii) , we get

    2[P(A)+P(B)+P(C)P(AB)P(BC)P(CA)]=34

  P(A)+P(B)+P(C)P(AB)P(BC)P(CA)=38

  P (atleast one event occurs)

    P(ABC)  = P(A)+P(B)+P(C)P(AB)P(BC)P(CA)

                                                  +P(ABC)=38+116=716

                               [P(ABC=116)]