1)

Two reactions R1 and  R2  have identical pre-exponential factors. The activation energy of R1 exceeds that of R2 by 10 kj mol-1 . If k1 and k2 are rate constants for reactions R1 and R2, respectively at 300 K. then ln $(\frac{k_{2}}{k_{1}})$ is equal to   (R=8.314 J mol-1 K-1)


A) 8

B) 12

C) 6

D) 4

Answer:

Option D

Explanation:

According to the Arrhenius equation

                   K= Ae-Ee/RT 

   where A= collision number or pre-exponentail factor

     R= gas constant

      T= absolute temperature

     Ea = energy of activation

    For reaction R1 ,k = Ae-Ea1/RT           ...........(i)

    For reaction R2 ,k2 =  Ae-Ea2/RT   ............(ii)

on dividing Eq  (ii) by Eq (i) , we get

          $\frac{k_{2}}{k_{1}}=e^-{\frac{(E_{a_{2}}-E_{a_{1}})}{RT}}$                .........(iii)

($\because$ Pre -exponental factor 'A' is same for both reactions)

      Taking In on both the sides of Eq  (iii) 

    We get

             $ln(\frac{k_{2}}{k_{1}})=\frac{E_{a_{1}}-E_{a_{2}}}{RT}$

     Given,   $E_{a_{1}}=E_{a_{2}}+10 kJ mol^{-1}$

                                       $E_{a_{1}}=E_{a_{2}}+10000 J mol^{-1}$

   $\therefore ln\frac{k_{2}}{k_{1}}=\frac{10000 J mol^{-1}}{8.314 Jmol^{-1}K^{-1}\times 300K}=4$