Answer:
Option D
Explanation:
$K = \frac{P}{(-\triangle V/V)}$
$\Rightarrow -\frac{\triangle V}{V}=\frac{P}{K}$
$\Rightarrow -\triangle V=\frac{PV}{K}$
change in volume $\triangle V= \gamma V \triangle T$
where $\gamma$ = coefficient of volume expansion
Again , $\gamma = 3\alpha$
$\alpha$ is coefficient of linear expansion
$\therefore$ Δ V =V (3 $\alpha$)ΔT
$\therefore \frac{PV}{K}=V (3\alpha)\triangle T$
$\therefore \triangle T= \frac{P}{3\alpha K}$