Answer:
Option B,D
Explanation:
$\frac{az+b}{z+1}=\frac{ax+b+aiy}{(x+1)+iy}$
$= \frac{(ax+b+aiy)((x+1)-iy)}{(x+1)^{2}+y^{2}}$
$\because$ $Im(\frac{az+b)}{z+1})=\frac{-(ax+b)y+ay(x+1)}{(x+1)^{2}+y^{2}}$
$\Rightarrow$ $\frac{(a-b)y}{(x+1)^{2}+y^{2}}=y$
$\because$ a-b=1
$\because$ $(x+1)^{2}+y^{2}=1$
$\because$ $x=-1\pm \sqrt{1-y^{2}}$