Answer:
Option C,D
Explanation:
(a) $\because e^{x}\epsilon(1,e)in(0,1)$ and
$\int_{0}^{x} f(t)\sin t dt\in (0,1)$ in (0,1)
$\therefore e^{x}-\int_{0}^{x} f(t) \sin t dt$ cannot be zero
so, option (a) is incorrect
(b) $f(x)+\int_{0}^{\frac{\pi}{2}}f(t) \sin t dt $ always postive
option b is incorrect
(c) Let $h(x)=x-\int_{0}^{\frac{\pi}{2}-x} f(t) \cos t dt$
$h(0)=-\int_{0}^{\frac{\pi}{2}} f(t) \cos t dt<0$
$h(1)=1-\int_{0}^{\frac{\pi}{2}-1} f(t) \cos t dt>0$
Option C is correct
(d) Let g(x)= x9-f(x)
g(0)=-f(0)<0, g(1)=1-f(1)>0
Option d is correct