Answer:
Option A,B
Explanation:
$P(X)=\frac{1}{3}$
$P(\frac{X}{Y})=\frac{P(X\cap Y)}{P(Y)}=\frac{1}{2}$
$P(\frac{Y}{X})=\frac{P(X\cap Y)}{P(X)}=\frac{2}{5}$
$P(X\cap Y)=\frac{2}{15}$
$P(Y)=\frac{4}{15}$
$P(\frac{X'}{Y})=\frac{P(Y)-P(X\cap Y)}{P(Y)}$
$=\frac{\frac{4}{15}-\frac{2}{15}}{\frac{4}{15}}=\frac{1}{2}$
$P(X\cup Y)=\frac{1}{3}+\frac{4}{15}-\frac{2}{15}$
= $\frac{7}{15}=\frac{7}{15}$