1)

Let O be the origin and OX, OY, OZ be three unit vectors in the directions of the sides QR,RP,PQ respectively of triangle PQR.

I f the triangle PQR varies, then the minimum value of $\cos(P+Q)+\cos(Q+R)+\cos(R+P)$ is


A) $-\frac{3}{2}$

B) $\frac{3}{2}$

C) $\frac{5}{3}$

D) $-\frac{5}{3}$

Answer:

Option A

Explanation:

$\cos(P+Q)+\cos(Q+R)+\cos(R+P)=-(cosR+\cos P+\cos Q)$

Max of $\cos P+\cos Q +\cos R=\frac{3}{2}$

Min of  $\cos(P+Q)+\cos(Q+R)+\cos(R+P) is =-\frac{3}{2}$