1) Let p,q be integers and let α ,β be the roots of the equation x2−x−1=0 where α ≠β, For n=0,1,2...... Let an=pαn+qβn ( If a and b are rational numbers and a+b√5=0, then a=0=b) If a24=28 , then p+2q= A) 14 B) 7 C) 21 D) 12 Answer: Option DExplanation:α=1+√52 β=1−√52 a4=a3+a2 =2a2+a1 =3a1+2a0 28=p(3α+2)+q(3β+2) 28=p+q(32+2)+p−q(3√52) ∴ p-q=0 and (p+q)×72=28 ⇒ p+q=8 ⇒ p=q=4 p+2q=12