Answer:
Option D
Explanation:
$\alpha =\frac{1+\sqrt{5}}{2}$
$\beta =\frac{1-\sqrt{5}}{2}$
$a_{4}=a_{3}+a_{2}$
$=2a_{2}+a_{1}$
$=3a_{1}+2a_{0}$
$28=p(3\alpha+2)+q(3\beta+2)$
$28=p+q(\frac{3}{2}+2)+p-q(\frac{3\sqrt{5}}{2})$
$\therefore$ p-q=0
and $(p+q)\times\frac{7}{2}=28$
$\Rightarrow$ p+q=8
$\Rightarrow$ p=q=4
p+2q=12