1)

If $g(x)=\int_{\sin x}^{\sin(2x)} \sin^{-1}(t)dt$ , then


A) $g'(-\frac{\pi}{2})=2\pi$

B) $g'(-\frac{\pi}{2})=-2\pi$

C) $g'(\frac{\pi}{2})=2\pi$

D) $g'(\frac{\pi}{2})=-2\pi$

Answer:

Option *

Explanation:

$g(x)=\int_{\sin x}^{\sin(2x)} \sin^{-1}(t)dt$ 

$g'(x)=2\cos 2x\sin^{-1}(\sin2x)-\cos x\sin^{-1}(\sin x)$

$g'(\frac{\pi}{2})=-2\sin^{-1}(0)=0$

$g'(-\frac{\pi}{2})=-2\sin^{-1}(0)=0$ 

no option is matching