1) If f:R→ R is differentiable function such that f'(x) >2f(x) for all x ε R, and f(0)=1 then A) f(x)>e2xin(0,∞) B) f(x)<;e2xin(0,α) C) f(x) is increasing in (0,∞) D) f(x) decresing in (0,∞) Answer: Option A,CExplanation:f'(x) >2f(x) ⇒ dyy>2dx ⇒ ∫f(x)1dyy>2∫x0dx ln(f(x))>2x ∴ f(x) >e2x Also as f'(x)>2f(x) \therefore f'(x)>2c2x>0