Processing math: 81%


1)

If f:R→ R  is differentiable function such that f'(x) >2f(x) for all x ε R, and f(0)=1 then


A) f(x)>e2xin(0,)

B) f(x)<;e2xin(0,α)

C) f(x) is increasing in (0,)

D) f(x) decresing in (0,)

Answer:

Option A,C

Explanation:

f'(x) >2f(x)

   dyy>2dx

   f(x)1dyy>2x0dx

 ln(f(x))>2x

   f(x) >e2x

Also as f'(x)>2f(x)

 \therefore  f'(x)>2c2x>0