1) Let O be the origin and let PQR be an arbitrary triangle. The point S is such that OP.OQ+OR.OS=OR.OP+OQ.OS=OQ.OR+OP.OS Then the triangle PQR has S as its A) centroid B) orthocentre C) incentre D) circumcentre Answer: Option BExplanation:OP.OQ+OR.OS =OR.OP+OQ.OS $\Rightarrow$ OP(OQ-OR)+OS(OR-OQ)=0 $\Rightarrow$ (OP-OS)(OQ-OR)=0 $\Rightarrow$ SP.RQ=0 Similarly SR.PQ=0 and SQ.PR=0 So S is orthocentre