1) if y=y(x) satisfies the differential equation $8\sqrt{x}(\sqrt{9+\sqrt{x}})dy=(\sqrt{4+\sqrt{9+\sqrt{x}}})^{-1}$ dx,x >0 and $y(0)=\sqrt{7}$ , then y(256)= A) 16 B) 3 C) 9 D) 80 Answer: Option BExplanation:$\frac{dy}{dx}= \frac{1}{8\sqrt{x}\sqrt{9+\sqrt{x}}\sqrt{4+\sqrt{9+\sqrt{x}}}}$ $\Rightarrow y=\sqrt{4+\sqrt{9+\sqrt{x}}}+c$ Now, y(0)=$\sqrt{7}+c$ c=0 $y(256)=\sqrt{4+\sqrt{9+16}}=\sqrt{4+5}=3$