Answer:
Option B,C
Explanation:
$V_{XY}=V_{0}\sin(\omega t+\frac{2\pi}{3})-V_{0}\sin\omega t$
= $V_{0}\sin(\omega t+\frac{2\pi}{3})+V_{0}\sin(\omega t+\pi)$
$\Rightarrow$ $\phi =\pi -\frac{2\pi}{3}=\frac{\pi}{3}$
$\Rightarrow$ $V_{0}^{'}= 2V_{0}\cos(\frac{\pi}{6})$
= $\sqrt{3}V_{0}$
$\Rightarrow$ $V_{XY}=\sqrt{3}V_{0}\sin (\omega t+\phi)$
$(V_{XY})_{rms}= (V_{YZ})_{rms}=\sqrt{3}\frac{V_{0}}{\sqrt{2}}$