Answer:
Option B,C
Explanation:
a)
(b)
r(1-cosθ)=R
$r\sin\theta =\frac{3R}{2}$
$\frac{\sin\theta}{1-\cos\theta}=\frac{3}{2}$
$\frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\sin^{2}\frac{\theta}{2}}=\frac{3}{2}$
$\cot\frac{\theta}{2}=\frac{3}{2}$
$\tan\frac{\theta}{2}=\frac{2}{3}$
$\tan\theta=\frac{2(\frac{2}{3})}{1-\frac{4}{9}}=\frac{\frac{4}{3}}{\frac{5}{9}}=\frac{12}{5}$
$\sin\theta=\frac{12}{13}$
$r(\frac{12}{13})=\frac{3R}{2}; r=\frac{13R}{8}=\frac{P}{QB};B=\frac{8P}{13QR}$
(c) $\frac{P}{QB}<\frac{3R}{2},B>\frac{2P}{3QR}$
(d) $r=\frac{mv}{QB},d=2r=\frac{2mv}{QB}\Rightarrow d\propto m$