Answer:
Option C
Explanation:
Given Ve= 11.2 km/s = $\sqrt{\frac{2GM_{e}}{R_{e}}}$
From energy conservation
Ki+Ui=Kf+Uf
$\frac{1}{2}mv_s^2-\frac{GM_{s}m}{r}-\frac{GM_{e}m}{R_{e}}=0+0$
Here r= distance of rocket from the sun
$\Rightarrow$ $ V_{s}=\sqrt{\frac{2GM_{e}}{R_{e}}+\frac{2GM_{s}}{r}}$
Given Ms = 3× 105 Me
and r=2.5× 104 Re
$\Rightarrow$ $ V_{s}=\sqrt{\frac{2GM_{e}}{R_{e}}+(2G)(\frac{3\times 10^{5}M_{e}}{2.5\times 10^{4}R_{e}})}$
=$\sqrt{\frac{2GM_{e}}{R_{e}}(1+\frac{3\times 10^{5}}{2.5\times 10^{4}})}$
= $\sqrt{\frac{2GM_{e}}{R_{e}}\times 13}$
= 42 km/s