Answer:
Option A
Explanation:
$t=\sqrt{\frac{L}{5}}+\frac{L}{300}$
$dt=\frac{1}{\sqrt{5}}\frac{1}{2}L^{-\frac{1}{2}}dL+(\frac{1}{300}dL)$
$dt=\frac{1}{2\sqrt{5}}\frac{1}{20}dL+\frac{dL}{300}=0.01$
$dL(\frac{1}{20}+\frac{1}{300})=0.01$
$dL(\frac{15}{300})=0.01$
$dL=\frac{3}{16}$
$\frac{dL}{L}\times100=\frac{3}{16}\times\frac{1}{20}\times 100=\frac{15}{16}=1$%