Answer:
Option A
Explanation:
$m=\frac{4\pi R^{3}}{3}\times\rho$
On taking log both sides, we have
ln(m)= ln($(\frac{4\pi ^{}}{3})$) + ln(ρ)+3ln(R)
On differentiating with respect to time
$ 0=0+\frac{1}{\rho}\frac{d \rho}{dt}+\frac{3}{R}\frac{dR}{dt}$
$\Rightarrow$ $ (\frac{dR}{dt})= v \propto -R \times \frac{1}{\rho}(\frac{d \rho}{dt})$
$ v \propto R$