Answer:
Option B,D
Explanation:
The net magnetic flux through that loops at time t is
$ \phi = B(2A-A)\cos\omega t=B\omega A \cos\omega t$
So, $\mid\frac{\text{d}\phi}{\text{d}t}\mid =BA \cos\omega t$
$\therefore$ $\mid\frac{\text{d}\phi}{\text{d}t}\mid$ is maximum when $\phi=\omega t$ = $\frac{\pi}{2}$
The emf induced in the smaller loop
εsmaller = $-\frac{\text{d}}{\text{d}t}(BA \cos\omega t)=B\omega A\sin\omega t$
$\therefore$ Amplitude of maximum net induced in both the loops= Amplitudeof maximum emf induced the smaller loop alone.