Answer:
Option D
Explanation:
Given $\mid\widetilde{a}\mid=\mid \widetilde{b}\mid=\mid \widetilde{c}\mid =1$
and $\widetilde{a}\times(\widetilde{b}\times \widetilde{c}) =\frac{\sqrt{3}}{2}(\widetilde{b}+\widetilde{c})$
Now consider $\widetilde{a}\times(\widetilde{b}\times \widetilde{c}) =\frac{\sqrt{3}}{2}(\widetilde{b}+\widetilde{c})$
$\Rightarrow (\widetilde{a}.\widetilde{c})\widetilde{b}-(\widetilde{a}.\widetilde{b})\widetilde{c}=\frac{\sqrt{3}}{2}\widetilde{b}+\frac{\sqrt{3}}{2}\widetilde{c}$
On comparing , we get
$\widetilde{a}.\widetilde{b}=-\frac{\sqrt{3}}{2}$
$\Rightarrow \mid\widetilde{a}\mid \mid\widetilde{b}\mid \cos\theta =-\frac{\sqrt{3}}{2}$
$\Rightarrow \cos\theta =-\frac{\sqrt{3}}{2}[\because \mid\widetilde{a}\mid=\mid\widetilde{b}\mid=1]$
$\Rightarrow \cos\theta =\cos(\pi-\frac{\pi}{6})$
$\Rightarrow \theta =\frac{5\pi}{6}$