Answer:
Option D
Explanation:
Since, the line $\frac{x-3}{2}=\frac{y+2}{-1}=\frac{z+4}{3}$ lies in the plane, lx+my-z=9, therefore we have 2l-m-3=0
[ $\because$ normal will be perpendicular to the line]
$\Rightarrow 2l-m=3$ .......(i)
and $ 3l-2m+4=9$
$[\because point (3,-2,-4)$ lies on the plane]
$\Rightarrow 3l-2m=5$ ........(ii)
On solvubg Eqs(i) and (ii) , we get
l=1 and m=-1
$\therefore l^{2}+m^{2}=2$