1)

For xϵR , f(x)=∣log2sinx and g(x)=f((f(x)),then  


A) g is not differentiable at x=0

B) g(0)=cos(log2)

C) g(0)=cos(log2)

D) g is differentiable at x=0 and g'(0)=-sin(log 2)

Answer:

Option B

Explanation:

We have f(x)=∣log2sinx  and g(x)=f(f(x)),xϵR

   Note that , for x0,log2>sinx

 f(x)=log2sinx

 g(x)=log2sin(f(x))

 Clearly g(x) is differentiable at x=0 as sin x is diffenerntiable

 Now    g(x)=cos(log2sinx)(cosx)

               =cosx.cos(log2sinx)

  g(0)=1.cos(log2)