Answer:
Option B
Explanation:
We have $f(x)=\mid\log2-\sin x$ and $g(x)=f(f(x)),x\epsilon R$
Note that , for $x\rightarrow0, \log2>\sin x$
$f(x)=\log 2-\sin x$
$\Rightarrow g(x)=\log 2-\sin(f(x))$
Clearly g(x) is differentiable at x=0 as sin x is diffenerntiable
Now $g'(x)=-\cos (\log 2-\sin x)(-\cos x)$
=$\cos x.\cos(\log2-\sin x)$
$\Rightarrow g'(0)=1.\cos(\log 2)$