Answer:
Option C
Explanation:
Given $p=\lim_{x \rightarrow 0}(1+\tan^{2}\sqrt{x})^{\frac{1}{2x}}$ ( 1∞ form)
$e^{\lim_{x \rightarrow0}\frac{\tan^{2}\sqrt{x}}{2x}}=e^{\frac{1}{2}\lim_{x \rightarrow 0}\left(\frac{\tan\sqrt{x}}{\sqrt{x}}\right)^{2}}=e^{\frac{1}{2}}$
$\log p=\log e^{\frac{1}{2}}=\frac{1}{2}$