Answer:
Option B
Explanation:
Let S10 be the sum of the first ten terms of the series, then we have
S10=(135)2+(225)2+(315)2+42+(445)2+...to 10 terms
=(85)2+(125)2+(165)2+42+(245)2+...to 10 terms
= 152(82+122+162+202+242...to 10 terms
=4252(22+32+42+52+...to to 10 terms)
= 4252(22+32+42+52+...+112)
= 1625((12+22+32+42+...+112)−12)
=1625(11.(11+1)(2.11+1)6−1)
=1625(506−1)=1625×505
⇒165m=1625×505=101