1)

If the sum of first ten terms of the series (135)2+(225)2+(315)2+42+(445)2+...is165m,, then m is equal to


A) 102

B) 101

C) 100

D) 99

Answer:

Option B

Explanation:

Let S10 be the sum of the first ten terms of the series, then we have 

S10=(135)2+(225)2+(315)2+42+(445)2+...to 10 terms

  =(85)2+(125)2+(165)2+42+(245)2+...to 10 terms

152(82+122+162+202+242...to  10 terms

=4252(22+32+42+52+...to  to  10 terms)

4252(22+32+42+52+...+112)

= 1625((12+22+32+42+...+112)12)

=1625(11.(11+1)(2.11+1)61)

 =1625(5061)=1625×505

165m=1625×505=101