Answer:
Option D
Explanation:
Clearly number of terms in the expansion of $(1-\frac{2}{x}-\frac{4}{x^{2}})^{n}$ is $\frac{(n+2((n+1)}{2} or ^{n+2}C_{2}$ { Assuming $\frac{1}{x}$ $\frac{1}{x^{2}}$ are distinct }
$\frac{(n+2)(n+1)}{2}=28$
$\Rightarrow n=0$
$\Rightarrow (n+2)(n+1)=56=(6+1)(6+2)$
= n=6
Hence sum of coefficeints
$(1-2+4)^{6}=3^{6}=729$
NOTE: As $\frac{1}{x}$ $\frac{1}{x^{2}}$ are function of same variables , therefore number of disimilar terms will be 2n+1 . ie. odd, which is not possible . Hence it contaibns error